module Data.Functor.Couple (Twain(..), Couple(..)) where
import Data.Bifunctor
import Data.Functor.Product
import Data.Functor.Identity
import Data.Foldable
import Data.Traversable
import Data.Functor.Adjunction (unzipR)
import Data.Semigroup
import Data.Typeable
import Control.Applicative
import Control.Comonad
import Data.PairMonad ()
import Control.Lens (Wrapped(..), Rewrapped(..), iso)
newtype Twain b a = Twain { getTwain :: (b, a) }
  deriving (Show, Functor, Traversable, Foldable, Typeable, Applicative, Monad, Comonad, Semigroup, Monoid)
instance Wrapped (Twain b a) where
  type Unwrapped (Twain b a) = (b, a)
  _Wrapped' = iso getTwain Twain
instance Rewrapped (Twain c a) (Twain c b)
instance (Monoid b, Num a) => Num (Twain b a) where
  (+) = liftA2 (+)
  (*) = liftA2 (*)
  () = liftA2 ()
  abs = fmap abs
  signum = fmap signum
  fromInteger = pure . fromInteger
instance (Monoid b, Fractional a) => Fractional (Twain b a) where
  recip        = fmap recip
  fromRational = pure . fromRational
instance (Monoid b, Floating a) => Floating (Twain b a) where
  pi    = pure pi
  sqrt  = fmap sqrt
  exp   = fmap exp
  log   = fmap log
  sin   = fmap sin
  cos   = fmap cos
  asin  = fmap asin
  atan  = fmap atan
  acos  = fmap acos
  sinh  = fmap sinh
  cosh  = fmap cosh
  asinh = fmap asinh
  atanh = fmap atanh
  acosh = fmap acos
instance (Monoid b, Enum a) => Enum (Twain b a) where
  toEnum = pure . toEnum
  fromEnum = fromEnum . extract
instance (Monoid b, Bounded a) => Bounded (Twain b a) where
  minBound = pure minBound
  maxBound = pure maxBound
instance Eq a => Eq (Twain b a) where
  Twain (b,a) == Twain (b',a')  =  a == a'
instance Ord a => Ord (Twain b a) where
  Twain (b,a) < Twain (b',a') = a < a'
instance (Monoid b, Real a, Enum a, Integral a) => Integral (Twain b a) where
  quot = liftA2 quot
  rem  = liftA2 rem
  quotRem = fmap (fmap unzipR) (liftA2 quotRem)
  toInteger = toInteger . extract  
instance (Monoid b, Real a) => Real (Twain b a) where
  toRational = toRational . extract
instance (Monoid b, RealFrac a) => RealFrac (Twain b a) where
  properFraction = first extract . unzipR . fmap properFraction
newtype Couple b a = Couple { getCouple :: (b, a) }
  deriving (Show, Functor, Foldable, Traversable, Typeable, Applicative, Monad, Comonad, Semigroup, Monoid)
instance Wrapped (Couple b a) where
  type Unwrapped (Couple b a) = (b, a)
  _Wrapped' = iso getCouple Couple
instance Rewrapped (Couple c a) (Couple c b)
instance (Monoid b, Num a) => Num (Couple b a) where
  (+) = liftA2 (+)
  (*) = liftA2 (*)
  () = liftA2 ()
  abs = fmap abs
  signum = fmap signum
  fromInteger = pure . fromInteger
instance (Monoid b, Fractional a) => Fractional (Couple b a) where
  recip        = fmap recip
  fromRational = pure . fromRational
instance (Monoid b, Floating a) => Floating (Couple b a) where
  pi    = pure pi
  sqrt  = fmap sqrt
  exp   = fmap exp
  log   = fmap log
  sin   = fmap sin
  cos   = fmap cos
  asin  = fmap asin
  atan  = fmap atan
  acos  = fmap acos
  sinh  = fmap sinh
  cosh  = fmap cosh
  asinh = fmap asinh
  atanh = fmap atanh
  acosh = fmap acos
instance (Monoid b, Enum a) => Enum (Couple b a) where
  toEnum = pure . toEnum
  fromEnum = fromEnum . extract
instance (Monoid b, Bounded a) => Bounded (Couple b a) where
  minBound = pure minBound
  maxBound = pure maxBound
instance (Eq b, Eq a) => Eq (Couple b a) where
  Couple ((b,a)) == Couple (b',a')  =  (b,a) == (b',a')
instance (Ord b, Ord a) => Ord (Couple b a) where
  Couple (b,a) < Couple (b',a') = (b,a) < (b',a')
instance (Monoid b, Ord b, Real a, Enum a, Integral a) => Integral (Couple b a) where
  quot = liftA2 quot
  rem  = liftA2 rem
  quotRem = fmap (fmap unzipR) (liftA2 quotRem)
  toInteger = toInteger . extract  
instance (Monoid b, Ord b, Real a) => Real (Couple b a) where
  toRational = toRational . extract
instance (Monoid b, Ord b, RealFrac a) => RealFrac (Couple b a) where
  properFraction = first extract . unzipR . fmap properFraction